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1. Berezin-Toeplitz quantization
of Hodge manifolds
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Fuzzy CP n

Quantization of CP n particularly nice, as it is a homogeneous space.

Underlying idea (naïve approach):

Group theoretic: Truncate the spectrum of the Laplace
operator and deform the product to obtain a closed algebra.
Complex geometry: Quantize Cn+1 and use the induced
result on CPn.

Quantization of Cn+1: (wα, w̄β) → (â†α, âβ)

Functions on CPn: normalize and use Hopf fibration:

0 → U(1) → S2n+1 → CPn → 0 .

This yields the quantization map:

1
|w|2k

wα1 ...wαk
w̄β1 ...w̄βk

→ â†α1
...â†αk

|0〉〈0|âβ1 ...âβk

Homogeneous coordinates ↔ creation/annihilation operators.
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Fuzzy projective algebraic varieties
Coordinate rings of projective algebraic varieties sit inside the ones of a CP n.

A projective algebraic variety is a subspace of CPn described by a
finite set of polynomial equations.

Example: CPn. Equivalently: ProjBn+1, Bn+1 = C[Cn+1]

Example: WCP 2(1, 1, 2) : (z0, z1, z2) ∼ (λz0, λz1, λ2z2)

Embedding into CP 3: (w0, w1, w2, w3) = (z2
0 , z0z1, z

2
1 , z2)

Coordinates no longer independent, but satisfy w2
1 − w0w2 = 0.

This generates an ideal I in B3, and as a projective algebraic
variety, we have WCP 2(1, 1, 2) = Proj(B3/I).
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Fuzzy projective algebraic varieties
Quantization of a toric variety corresponds to quantization of its toric base.

Recall the quantization map:

1
|w|2k

wα1 ...wαk
w̄β1 ...w̄βk

→ â†α1
...â†αk

|0〉〈0|âβ1 ...âβk

Decompose:
the coordinate ring B3 =

∑∞
k=0B3,k, zα1 ...zαk

∈ B3,k

the Fock space F =
∑∞

k=0Fk, â†α1 ...â
†
αk |0〉 ∈ Fk

Quantization maps B3,k · B̄3,k to Fk · F∗
k

Idea:

To quantize Proj(B3/I), map B3,k/I · B̄3,k/I to Fk/Î · F∗
k/Î.

If f(w0, ..., wn) generates I, then Fk/Î refers to those elements
|µ〉 ∈ Fk which satisfy f̂(â0, ..., ân)|µ〉 = 0.

Quantization of toric variety: quantization of its toric base.
In this manner: even singular varieties. CS: hep-th/0612173
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Donaldson’s algorithm for computing Calabi-Yau metrics
The algorithm employs methods strongly reminiscent of our quantization procedure.

Calabi-Yau manifold:
Kähler manifolds appearing in superstring compactifications as
M4 × CY , admit Ricci-flat metric in every Kähler class.

To extract information about the low-energy physics: need metric.
⇒ Donaldson’s algorithm:
Expand Kähler potential K: ω = ∂∂̄K to order k as

K = lnhα1...αkβ1....βkwα1 ...wαk
w̄β1 ...w̄βk

Factoring out the ideal I(f): wα1 ...wαk
→ basis set (si).

A metric determined by K = lnhijsis̄j is called balanced, if

(hij)−1 = 〈si, sj〉 =
Nk

volCY

∫
CY

dµCY (x)
sis̄j

hklsks̄l
.

Theorem: For each k ≥ 0, the balanced metric exists and is
unique. For k →∞: convergence to the Ricci-flat metric.
Algorithm: Solve by iteration at each level k, convergence fast.
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Berezin- and Berezin-Toeplitz quantization
Our quantization procedure agrees with a generalized Berezin-quantization.

To see, how our quantization procedure might be applied here, let
us look more closely at the procedure. → Geometric Quantization

X compact complex manifold
L polarization of X, i.e. a positive (ample) holomorphic line bundle
Kähler metric on X ↔ hermitian metric h on L up to rescaling:

ω =
i

2π
F = −∂∂̄ lnh(σ, σ) , σ ∈ H0(L) over patch σ(x) 6= 0

Replace L by very ample: Lk (basis of sections yields X↪→CPn)

Consequences: hk = h⊗k and ∇k = ∇⊗k, E = H0(Lk) = span(si)

(X,ω,L, h): prequantized Hodge manifold.
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Rawnsley coherent states
A set of coherent states can be associated with (X, ω, L).

Let L be the total space of L and L0 = L\o. Also: π : L → X.

s(π(q)) =: q̂(s)q , q ∈ L0 , s ∈ H0(L)

q̂(s): “How much does one have to scale s to pass through q”
By Riesz’s theorem, there is a unique holomorphic section eq with:

(eq, s) = q̂(s)

Define Gij = (si, sj), then

eq = Gjiq̂(si)sj

Introduce the Rawnsley’s coherent state projectors:

Px :=
|eq)(eq|
(eq|eq)

, q ∈ Lx\{0}

Px depends only on x ∈ X, L and G.
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Rawnsley coherent state projector - Integral formula
A simple integral identity can be derived for the Rawnsley coherent states.

Px :=
|eq)(eq|
(eq|eq)

, q ∈ Lx\{0}

Introduce the ε-function

ε(x) := h(q, q)||eq||2 = Gijh(x)(si(x), sj(x))

Consider the scalar product given by µ(x) and h:

(s, t) =
∫

X
dµ(x)h(x)(s(x), t(x)) =

∫
X

dµ(x)ε(x)(s|Px|t) .

Thus: ∫
X

dµ(x)ε(x)Px = idE

Scalar product on E balanced:

ε(x) =
µ(X)
N + 1
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Berezin and Berezin-Toeplitz quantization
There are two quantization procedures making use of Px.

Linear operator C ∈ End (E). Define its lower Berezin symbol:

σ(C)(x) := tr (CPx) =
(eq|C|eq)
(eq|eq)

Call σ(End (E)) =: Σ.
Define the Berezin quantization of f ∈ Σ as: σ−1(f).

The Toeplitz quantization T : C∞(X) → End (E) is defined:

T (f) =
∫

X

ωn

n!
ε(x)f(x)Px

Properties: T (f̄) = T (f)† and T (1X) = 1E
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Generalized Berezin quantization
The Berezin quantization can be generalized to arbitrary scalar products.

If ( , ) is induced from h on L and Ω = ωn

n! , then σ is injective.

What happens if we change the scalar product?

(s, t)′ = (As, t) = (s,At) ,

where A Hermitian, positive-definite. Consequences:

e′q = A−1eq , P ′x =
1

σ(A−1(x)
A−1Px , σ′(C) =

σ(CA−1)
σ(A−1)

⇒ Two (generalized) Berezin quantizations agree, if the operator
A is proportional to the identity:
σ′(C) = σ(C) ⇒ ∀C : σ(C)σ(A) = σ(A)σ(C)
⇒ ∀C : σ(AC) = σ(CA) ⇒ ∀C : [A,C] = 0 ⇒ A = λ1E .
(Similarly: generalized Toeplitz quantization.)
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Berezin-Bergman quantization
This quantization procedure is a special case of generalized Berezin quantization.

Consider (X,L), Ek = H0(Lk)
Homogeneous coordinate ring: R(X,L) = ⊕∞k=0Ek

We have R ∼=[k] B/I, where B = ⊕∞k=0E
¯k
1

Two ways of introducing a scalar product on Ek:

〈r, t〉k =
∫

X

ωn

n!
h⊗k(r, t) ⇒ ordinary Berezin/Toeplitz theory

(r1 ¯ ...rk, t1 ¯ ...tk)B =
1
k!
δk,l

∑
σ∈Sk

(r1, tσ(1))1...(rk, tσ(k))1

Choose (sα, sβ) = δαβ: metric on Ek is implied in using
(wα, w̄β) → (â†α, âβ) , f̂ |µ〉 = 0 , (µ, ν) := 〈µ|ν〉
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Integral formulas
Exact integral formulas are obtained from the coherent state projector.

To obtain integral formulas, recall the overcompleteness relation
for coherent states

∫
X dµ(x)ε(x)Px = idE , which implies that∫

X
dµ(x)ε(x)f(x) =

∫
X

dµ(x)ε(x) tr (Pxf̂) = tr (f̂) .

For balanced metrics, ε(x) = 1, otherwise: introduce the operator

ρ̂ = T

(
1

volω(X)ε(x)

)
=

1
volω(X)

∫
X

ωn

n!
Px ,

such that

1
volω(X)

∫
X

ωn

n!
f(x) =

1
volω(X)

∫
X

ωn

n!
tr (Pxf̂) = tr (ρ̂f̂) .

Thus: can integrate over arbitrary measures in quantum picture.
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Berezin-Bergman quantization and CY metrics
Determining the integral formula is more difficult than Donaldson’s original algorithm.

To obtain useful integral formulas, which are needed for iterating

hn+1,ij =
Nk

volCY

∫
CY

dµ(x)
sis̄j

hkl
n sks̄l

,

we would have to compute the matrix A which takes us from∫
X

ωn

n!
h⊗k(r, t) ⇒ 1

k!
δk,l

∑
σ∈Sk

(r1, tσ(1))1...(rk, tσ(k))1

This involves computing even more integrals.
Trivial only for balanced case.

⇒ Never try to be smarter than Donaldson, unless you have a very
good reason for doing so.
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Laplace operators on Berezin-quantized manifolds
There are in principle two ways of defining a Laplace operator.

First idea: the quantum versions OB : End (E) → End (E) of a
differential operator O : Σ → Σ should act on quantized functions
as they do on ordinary functions:

OB f̂ := σ−1(ΠL2(O(σ(f̂))))

We call this the Berezin push of an operator. (Analogously, define
the Berezin pull OB → O.)

This definition can be used to perform approximate harmonic
analysis on projective varieties.
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Approximate harmonic analysis on Fermat curves
The Berezin-push can be used to analyze the spectrum of ∆ approximatly.

Example:
Fermat curve: projective algebraic variety Xp ⊂ CP 2 given by

f(w0, w1, w2) = wp
0 + wp

1 + wp
2 = 0 .

Endow Xp with the Bergman metric obtained by pulling back the
Fubini-Study metric from CP 2, which determines the Laplacian.
Calculate the matrix ∆(ij)(kl) with ∆B(sks̄l) = ∆(ij)(kl)sis̄k and
determine its eigenvalues.

Examples: X2, X3,CP
2:
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Berezin-Toeplitz lift
A quantum Laplace operator should be a hermitian operator.

However: If O hermitian with respect to ( , )ω, its Berezin push is
not hermitian with respect to 〈 , 〉HS !

Second idea: preserve hermiticity:

〈T (f), C〉HS = tr (T (f)†C) =
∫

X
dµ(x)ε(x)f̄(x)σ(C) = (f, σ(C))ε,ω

Thus: σ⊕ = T ◦M 1
ε
, and define the Berezin-Toeplitz lift of O:

Ô = σ⊕ ◦O ◦ σ = T ◦M 1
ε
◦O ◦ σ .

This procedure preserves hermiticity, but 1̂ 6= 1End (E).

Christian Sämann Generalized Berezin Quantization



Fuzzy scalar field theory
Scalar field theories can be regularized using quantized spaces.

Scalar field theory on (X,ω) is defined by a functional S[φ]:

S[φ] :=
1

volω(X)

∫
X

ωn

n!
(φ∆φ+ V (φ)) , φ ∈ C∞(X,R) ,

where V (φ) =
∑d

s=0 asφ
s. The corresponding quantum version:

Sq[φ] :=
1

volω(X)
tr
(
Φ∆̂Φ + V (Φ)

)
, Φ ∈ End (E) ,

The functional integral
∫
D[φ] in the partition function

Zq =
∫
D[Φ]e−S[Φ]

becomes a well-defined finite-dimensional integral.

⇒ We have all the necessary ingredients for defining precisely
quantum field theories on arbitrary (quantum) Hodge manifolds.
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Berezin-Bergman quantization of supermanifolds
The case of supermanifolds imposes some more technical difficulties

What remains the same:
Kodaira embedding theorem translates (LeBrun, Poon, Wells)
Rawnsley coherent states can be translated
Our quantization procedures, up to technicalities

New features:
Non-split supermanifolds require more detailed analysis
Normalizations, as supermanifolds can have zero volume
Regularization of SUSY theories not completely understood

Interestingly, regularizing SUSY field theories works when using CY
supermanifolds: the volume form of C1|2 and the local volume
form on CP 1|2 agree.

Lazaroiu, McNamee, CS, 0811.4743
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Applying matrix model techniques to fuzzy field theories
Fuzzy scalar field theory is significantly harder than matrix models usually considered.

Fuzzy scalar field theory: Z =
∫

dµD(Φ) e− tr (a[Li,Φ][Li,Φ]+b Φ2+c Φ4)

One-Hermitian Matrix Model

Z =
∫

dµD(Φ) e− tr (b Φ2+c Φ4)

Solution: splitting Φ = ΩΛΩ†, Λ = diag(λ1, . . . , λN ) as well as∫
dµD(Φ) =

∫ ∏N
i=1 dλi∆2(Λ)

∫
dµH(Ω) yields

Z =
∫ N∏

i=1

dλi e−2
P

i>j ln |λi−λj |−b
P

i λ2
i +c

P
i λ4

i

From here: saddle point, orthogonal polynomials, etc.

Difficulty in our case: multiple external matrices.
(Single one solvable as found by Itzykson and Di Francesco)
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Perturbative expansion: Principles
The angular variables can be integrated out in the perturbative series.

Introduce Kab:= tr ([Li, τa][Li, τb]), Φa = tr (τaΩΛΩ†). Then:

eaΦaKabΦ
b

= 1 + aΦaKabΦb +
a2

2
ΦaKabΦb ΦcKcdΦd + . . .

To integrate over dµH(Ω) we need to compute terms like∫
dµH(Ω)Kab tr (τaΩΛΩ†) tr (τ bΩΛΩ†)

Recall:
∫

dµH(Ω) [ρ(Ω)]ij [ρ†(Ω)]kl =
1

dim(ρ)
δilδjk

tr
(
(τaΩΛΩ†)⊗ (τ bΩΛΩ†)

)
= tr

(
(τa ⊗ τ b)(Ω⊗ Ω)(Λ⊗ Λ)(Ω† ⊗ Ω†)

)
Thus:

∫
dµH(Ω)KabΦaΦb = Kab

∑
ρ

1
dim(ρ) tr ρ(τa ⊗ τ b) tr ρ(Λ⊗ Λ)
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Results from saddle point approximation in large-N limit
Phase diagrams show rough agreement.

The boundary of the region of validity of the one-cut solution is
consistent with the data.

Numerics, fuzzy φ4-theory Analytical results, multi-trace MM

Triple pt: (−2.3± 0.2, 0.52± 0.02) Turning pt: (−2.7, 0.25)

⇒ Turning point corresponds to triple point.
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Conclusions, Berezin-Toeplitz quantization
Summary and Outlook.

Past work:
Explicit relation between intrinsic and extrinsic quantization
Formulas for integrals and differential operators on quantized
manifolds
Huge new classes of regularization of scalar field theories
Demonstrated the applicability of matrix model techniques
Quantization procedures extended to supermanifolds
Regularization of examples of SUSY field theories

Future directions:
Improve understanding of regularization in SUSY case
Study quantized toric varieties (flip transitions, etc.)
Quantization of singular projective varieties
Continue looking for fuzzy shortcut for Donaldson’s algorithm
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2. Multiple M2-branes:
The Bagger-Lambert-Gustavsson model
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Approaching the Effective Description of M2-Branes
Spacetime symmetries and BPS equations give helpful constraints on the description.

A stack of flat M2-branes in R1,10 should be effectively described
by a conformal field theory with the following constraints:

Spacetime symmetries: SO(1, 10) → SO(1, 2)× SO(8)
extended by N = 8 SUSY.

Field content: XI , I = 1, ..., 8, and superpartners Ψα

Assumption
SUSY transformations from Basu-Harvey equation and therefore
the matter fields take values in a metric 3-Lie algebra
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Metric 3-Lie algebras
3-Lie algebras come with a triple bracket and an induced Lie algebra structure.

metric 3-Lie algebras

A a real vector space with a bracket [·, ·, ·] : Λ3A → A satisfying

[A,B,[C,D,E]] =
[[A,B,C], D,E] + [C, [A,B,D], E] + [C,D, [A,B,E]] (FI)

and a bilinear symmetric map (·, ·)A : A⊗A → A satisfying

([A,B,C], D)A + (C, [A,B,D])A = 0 (Cmp)

Action of gA := A ∧A on A given by linearly extending

(A ∧B) B C := [A,B,C] , A,B,C ∈ A

Because of (FI), the commutator of two such actions is again of
this type. Therefore: Lie algebra structure on gA.

Two invariant pairings on gA: (A ∧B,C ∧D)g := ([A,B,C], D)A
and induced Killing form.
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The Bagger-Lambert-Gustavsson model
This model is an unconventional supersymmetric Chern-Simons matter theory.

BLG found that for SUSY, we need to introduce gauge symmetry.
⇒ additional gauge potential Aµ taking values in gA.

Simplify: Clifford alg. Cl(R1,10), X := ΓIX
I , {ΓI ,ΓJ} = 2ηIJ

(A,B)A⊗C := 1
32 tr C

(
(A,B)A

)
, [·, ·, ·] linearly extended

The Bagger-Lambert-Gustavsson model

LBLG = + 1
2ε

µνκ
(
(Aµ, ∂νAκ)g + 1

3(Aµ, [Aν , Aκ])g

)
− 1

2(∇µX,∇µX)A⊗C + i
2(Ψ̄,Γµ∇µΨ)A

+ i
4(Ψ̄, [X,X,Ψ])A − 1

12([X,X,X], [X,X,X])A⊗C

δX = iΓI ε̄ΓIΨ , δΨ = ∇µXΓµε− 1
6 [X,X,X]ε ,

δAµ = iε̄Γµ(X ∧Ψ)
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Manifestly N = 2 SUSY formulation
There is a manifestly N = 2 SUSY formulation, allowing for various deformations.

Take N = 1, d = 4 superspace R1,3|4 and dim. reduce along x2.

Superfields on R1,2|4:

Φi(y) = φi(y) +
√

2θψi(y) + θ2F i(y) ,

V (x) = − θαθ̄α̇(σµ
αα̇Aµ(x) + iεαα̇σ(x))

+ iθ2(θ̄λ̄(x))− iθ̄2(θλ(x)) + 1
2θ

2θ̄2D(x) ,

N = 2 superspace formulation of BLG (Cherkis, CS, 0807.0808)

L =
∫

d4θ κ
(
i(V, (D̄αD

αV ))g + 2
3(V, {(D̄αV ), (DαV )})g

)
+ (Φ̄i, e2iV B Φi)A + α

(∫
d2θ εijkl([Φi,Φj ,Φk],Φl)A + c.c.

)
This Lagrangian is not manifestly gauge invariant.
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Admissible 3-algebraic structures
Gauge invariance leads to much freedom.

Demanding gauge invariance in above theory yields the condition:

([A,B,C], D)A = −([B,A,C], D)A
= −([A,B,D], C)A = ([C,D,A], B)A

With (FI) and (Cmp), this defines Generalized 3-Lie algebras.

Example:
Take a Clifford algebra Cl(R2d) generated by γa. Define:

[γa, γb, γc] := [[γa, γb]γch, γc] , (γa, γb)A = tr (γ†aγb)

Other Generalizations: hermitian and unitary 3-algebras.

All these fit into a nice, unifying picture.
(Medeiros, Figueroa-O’Farrill, Mendez-Escobar, Ritter, 0809.1086)

Christian Sämann Generalized Berezin Quantization



Classifications of Matrix Representations of 3-Algebras
Using the elementary operations in matrix algebras, representations can be constructed.

Matrix representation of a (metric) 3-algebra:

Take a matrix ∗-algebra equipped with a trace form. Construct a
3-bracket on this algebra from matrix products and the involution
and use the Hilbert-Schmidt scalar product (A,B) = tr (A†B).

Classification of all such representations in the real and hermitian
case using MuPad done in Cherkis, Dotsenko, CS, 0812.3127

Example: The Real case. [A,B,C] :=

I : α([[A∗, B], C] + [[A,B∗], C] + [[A,B], C∗]− [[A∗, B∗], C∗])
II : α([[A,B∗], C] + [[A∗, B], C])
III : α(AB∗ −BA∗)C + βC(A∗B −B∗A)
IV : α([[A,B], C] + [[A∗, B∗], C] + [[A∗, B], C∗] + [[A,B∗], C∗])

+ β([[A,B], C∗] + [[A∗, B], C] + [[A,B∗], C] + [[A∗, B∗], C∗]) .
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Manifestly N = 4 supersymmetric formulation
In projective superspace, one can make N = 4 SUSY in the BLG model manifest.

Projective superspace in 4d

N = 2 SUSY covariant derivatives on R1,3|8:
{Diα, Djβ} = 0 {D̄i

α̇, D
j

β̇
} = 0 {Diα, D̄

j
α̇} = −2iδj

i σ
µ
αα̇∂µ

add ζ ∈ U0 ⊂ CP 1 parameterizing N = 2 within N = 1:

∇ζ = D1 + ζD2 , ∇̄ζ = −ζD̄1 + D̄2

Projective superspace: R1,3|8 ×CP 1 “divided by” ∇ζ , ∇̄ζ .

Field content of the BLG model encoded after dim. red. as:
2 hyper- or O(4) multiplets: η = Φ̄ 1

ζ2 + Σ̄1
ζ +X − ζΣ + ζ2Φ

1 vector or tropical multiplet: V(ζ, ζ̄) =
∑∞

n=−∞ vnζ
n

Supersymmetric action:∫
µ κ
(
i(V, (D̄αDαV))g+2

3(V, {(D̄αV), (DαV)})g

)
+
(
η̄k, e2iV B ηk

)
A
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L∞-algebras and homotopy Maurer-Cartan equations
The eom of the BLG model can be reformulated as homotopy Maurer-Cartan equations.

L∞- or strongly homotopy Lie algebras

• Introduced by Stasheff (1963) “only way to extend Lie algebras”
• appear in string FT, top. conf. FT, Morse theory
Definition:
R-module L, with family of R-multilinear maps µn : L×n → L s.t.:

µn(xσ(1) . . . xσ(n)) = ε(σ)µn(x1 . . . xn)
nX

i=1

X
σ∈Sh(i,n−i)

(−1)i(n+1)ε(σ)µn−i+1(µi(xσ(1), ..., xσ(i)), xσ(i+1), ..., xσ(n)) = 0

There is also a graded version, then µn is of degree 2− n.
Note: µ1 is a differential, µ1, µ2 6= 0 → diff. (grad.) Lie algebra

Interestingly, n-Lie algebras are (ungraded) L∞-algebras
(Hanlon, Wachs 1995, Dzhumadil’daev, math/0202043)
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L∞-algebras and homotopy Maurer-Cartan equations
The eom of the BLG model can be reformulated as homotopy Maurer-Cartan equations.

homotopy Maurer-Cartan equation

Given a (graded) L∞-algebra L = ⊕iLi,∑
`≥0

(−1)`(`+1)/2

`!
µ`(ϕ⊗`) = 0 , ϕ ∈ L

is invariant under the gauge transformations

δϕ = −
∑
`≥1

(−1)`(`−1)/2

(`− 1)!
µ`(α⊗ ϕ`−1) , α ∈ L0

Andrei Losev: “All classical equations of motion are of hMC form.”

Example: The Nahm equation ∇sX
i + εijk[Xj , Xk] = 0

L := Ω•(R, Cl(R3))⊗ su(N), also X = γiX
i, d̃s = 1, γ̃i = 1

µ2(λ1, λ2) := [λ1, λ2] µ2(λ,A) := [λ,A] µ2(λ,X) := [λ,X]
µ2(A,X) := [A,X] µ2(X,X) := [X,X]ds

This reproduces eom and gauge symmetry correctly.
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L∞-algebras and homotopy Maurer-Cartan equations
The eom of the BLG model can be reformulated as homotopy Maurer-Cartan equations.

BLG equations of motion (bosonic part):
∇µ∇µX + 1

2Γ[X,X,Γ[X,X,X]] = 0
[∇µ,∇ν ] + εµνκ( tr C(X ∧ (∇κX))) = 0

Start with 3-Lie algebra L and introduce the module
L := Ω•(R3)⊗C Cl8 ⊗ (L⊕ gL)

define gradings:
deg(Ω0(R3)⊗C Cl8,0 ⊗ gL) = 0

deg(Ω1(R3)⊗C Cl8,0 ⊗ gL) = deg(Ω0(R3)⊗C Cl8,1 ⊗ L) = 1

deg(Ω2(R3)⊗C Cl8,0 ⊗ gL) = deg(Ω3(R3)⊗C Cl8,1 ⊗ L) = 2

The fields will live in the following subspaces:
A ∈ Ω1(R3)⊗ Cl8,0 ⊗ gL X ∈ Ω0(R3)⊗ Cl8,1 ⊗ L

λ ∈ Ω0(R3)⊗ Cl8,0 ⊗ gL

Christian Sämann Generalized Berezin Quantization



L∞-algebras and homotopy Maurer-Cartan equations
The eom of the BLG model can be reformulated as homotopy Maurer-Cartan equations.

BLG equations of motion (bosonic part):
∇µ∇µX + 1

2Γ[X,X,Γ[X,X,X]] = 0
[∇µ,∇ν ] + εµνκ( tr C(X ∧ (∇κX))) = 0

Define the following brackets:

µ1(A) := dA µ2(A, A) := [[A ∧A]] ,

µ2(X, X) := ∗τ(X ∧ dX) µ3(A, X, X) := ∗τ(X ∧ [A, X])

µ1(X) := ∆Xω µ2(A, X) := ∂µ[Aµ, X]ω + [Aµ, ∂µX]ω

µ3(A, A, X) := [Aµ, [Aµ, X] ]ω µ5(X
⊗5) := Γ[X, X, Γ[X, X, X]]

further brackets consistently from the homotopy Jacobi identities.

The hMC equations
∑

`≥0
(−1)`(`+1)/2

`! µ`(ϕ⊗`) = 0 reproduce the
BLG model together with its gauge invariance. (SUSY extension)

Lazaroiu, McNamee, Saemann, Zejak, [0901.????]
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Conclusions, Multiple M2-branes
Summary and Outlook.

Past work:
Identification of extended 3-algebraic strctures
Classification of categorical matrix representations
Manifestly N = 2 and N = 4 supersymmetric formulations of
the BLG-like models
Identification of L∞-algebra structure
BLG eoms rewritten as homotopy Maurer-Cartan equations

Future directions:
What is the role of L∞-algebras? Extendable? Classifications?
Which 3-algebras yield Hamiltonians of integrable spin chains?
Extend SUSY models by Yang-Mills term, analyze
Lift the Nahm/Fourier-Mukai transform to M-theory
Ultimately: find analogous models for M5 branes
Lift a D-brane correspondence to M-theory...
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3. Example of possible future research:
Lift a D-brane correspondence to M-theory
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Underlying Idea of Twistor String Theory
To make contact with string theory, we need to extend this picture supersymmetrically.

Marrying Twistor- and Calabi-Yau geometry

... with supermanifolds: Witten, hep-th/0312171
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Supertwistor Space
The supertwistor space P3|N is a holomorphic vector bundle of rank 3|4N over CP 1.

The Supertwistor Space P3|N

Start from CP 3|N , take out CP 1|N at infinity:

P3|N := C2 ⊗O(1)⊕CN ⊗ΠO(1) → CP 1

Incidence Relations

ωα = xαα̇λα̇

ηi = ηα̇
i λα̇

Double Fibration

P3|N

C4|2N ×CP 1

¡
¡ª

C4|2N

@
@R

First Chern Class of P3|4

TCP 1 2, O(1) 1, ΠO(1) -1, in total: c1 = 0.
Therefore, there exists a holomorphic measure Ω3,0|4,0.
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Penrose-Ward Transform on P3|4
τ

Imposing reality conditions simplifies the situation significantly.

Introducing a real structure τ , the double fibration collapses:

P3|N

C4|2N ×CP 1

¡
¡ª

C4|2N

@
@R −→ P3|N

τ → R
4|2N
τ

(τ±1 related to Kleinian and Euclidean metrics on R4|2N
τ .)

Now: Field expansion of hCS gauge potential A0,1 available:

Aα =λα̇Aαα̇(x) + ηiχ
i
α(x) + γ 1

2! ηiηj λ̂
α̇ φij

αα̇(x)+

γ2 1
3! ηiηjηk λ̂

α̇ λ̂β̇ χ̃ijk

αα̇β̇
(x) + γ3 1

4! ηiηjηkηl λ̂
α̇ λ̂β̇ λ̂γ̇ Gijkl

αα̇β̇γ̇
(x)

Aλ̄ =γ2ηiηj φ
ij(x)− γ3ηiηjηk λ̂

α̇ χ̃ijk
α̇ (x) + 2γ4ηiηjηkηl λ̂

α̇ λ̂β̇Gijkl

α̇β̇
(x)

Popov, CS, ATMP 9 (2005) 931

This field expansion makes the equivalence hCS↔ SDYM manifest.
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Matrix Models
Matrix models are obtained by dimensional reduction

Dimensional reduction to a matrix model: R4|8 → R0|8:

Matrix Model from N = 4 hCS theory (MQM):

S :=
∫
CP 1

ch

Ωred ∧ tr εαβXα

(
∂̄Xβ +

[
A0,1

CP 1 ,Xβ

])
Ωred := Ω3,0|4,0|

CP 1
ch

Ωred± = ±dλ± ∧ dη±1 . . . dη
±
4

Matrix Model from N = 4 SDYM theory:

S := tr

(
Gα̇β̇

(
−1

2ε
αβ[Aαα̇, Aββ̇]

)
+ ε

2φ
ij [Aαα̇, [Aαα̇, φij ]]+...

)
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ADHM and the SDYM Matrix Model
The SDYM Matrix Model is almost equivalent to the ADHM equations.

Perspective of D(-1)-branes
Supersymmetrically extend ADHM eqns.:
Aαα̇ → Aαα̇ + ηi

α̇χiα and wα̇ → wα̇ + ηi
α̇ψi

Drop the D(-1)-D3-strings, i.e. wα̇
!= 0

⇒ SDYM MM equations
How to obtain the full picture?
Incorporate D(-1)-D3-strings in MM
in hCS: D1-D5-strings.
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D-brane configuration equivalences
We had topological-physical D-brane equivalences for ADHM and Nahm construction.

⇐⇒

⇐⇒

But: There are many more.

Problem: Extend correspondences and lift to M-theory.
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