Extended Riemannian Geometry and Double Field Theory

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

EMPG, Edinburgh, 1.2.2017

Based on:

arXiv:1611.02772 with Andreas Deser

Aim: Clarify mathematical structures behind Double Field Theory

Double Field Theory (DFT)

- target space formulations useful (SUSY YM, SUGRA) } DFT
- T-duality very interesting

Tseytlin, Siegel, Hull, Zwiebach, ...

ullet Success, e.g.: DFT action on \mathbb{R}^{2D} :

$$S = \int d^{2D}x e^{-2d} \left(\frac{1}{8} \mathcal{H}_{MN} \partial^M \mathcal{H}_{KL} \partial^N \mathcal{H}^{KL} - \frac{1}{2} \mathcal{H}_{MN} \partial^M \mathcal{H}_{KL} \partial^L \mathcal{H}^{KN} - 2\partial^M d\partial^N \mathcal{H}_{MN} + 4\mathcal{H}_{MN} \partial^M d\partial^N d \right)$$

 \mathcal{H}_{MN} : generalized metric, d: DFT dilaton

- Reproduces SUGRAs previously not derived from string theory
- sensible? strange truncation of string modes? seems to work

Clarifying the mathematical structures underlying Double Field Theory.

Manifest invariance under T-duality, coordinates $x^M = (x^\mu, x_\mu)$:

ullet g and B transform differently, combine in generalized metric:

$$\mathcal{H}_{MN} = \begin{pmatrix} g_{\mu\nu} - B_{\mu\kappa}g^{\kappa\lambda}B_{\lambda\nu} & B_{\mu\kappa}g^{\kappa\nu} \\ -g^{\mu\kappa}B_{\kappa\nu} & g^{\mu\nu} \end{pmatrix}$$

- ullet Level matching: Fields ϕ in DFT satisfy $\Box \phi = 0$
- Algebra of fields: strong section condition:

$$\partial^M \phi \partial_M \psi = 0$$

• Generalized Lie derivative wrt. $X = X^{\mu} \frac{\partial}{\partial x^{\mu}} + X_{\mu} \frac{\partial}{\partial x_{\mu}}$:

$$\hat{\mathcal{L}}_X \mathcal{H}_{MN} = X^P \partial_P \mathcal{H}_{MN} + (\partial_M X^P - \partial^P X_M) \mathcal{H}_{PN} + (\partial_N X^P - \partial^P X_N) \mathcal{H}_{MP}$$

ullet $\hat{\mathcal{L}}_X$ form Lie algebra, but not representation of Lie algebra

$$\hat{\mathcal{L}}_X \hat{\mathcal{L}}_Y - \hat{\mathcal{L}}_Y \hat{\mathcal{L}}_X = \mathcal{L}_{\mu_2(X,Y)} ,$$

• $\mu_2(X,Y)$ known as C-bracket, actually: part of L_{∞} -algebra

Issues to address in a mathematical formulation:

• Issue 1: Section condition is ugly/coordinate dependent:

$$\partial^M \phi \ \partial_M \psi = 0$$

- Issue 2: Section condition is often too strong
- Issue 3: Reasonable version of Doubled Riemannian Geometry

$$\widehat{\Gamma}_{MNK} = -2(P\partial_{M}P)_{[NK]} - 2(\bar{P}_{[N}{}^{P}\bar{P}_{K]}{}^{Q} - P_{[N}{}^{P}P_{K]}{}^{Q})\partial_{P}P_{QM} + \frac{4}{D-1}(P_{M[N}P_{K]}{}^{Q} + \bar{P}_{M[N}\bar{P}_{K]}{}^{Q})(\partial_{Q}d + (P\partial^{P}P)_{[PQ]})$$

- Issue 4: Global formulation of DFT
- Issue 5: Same for Exceptional field theory (M-theory analogue)

- Massless string modes: metric g, 2-form B, dilaton ϕ .
- Recall: B-field belongs to gerbe/categorified principal bundle
- ullet Generalized Geometry: Courant/Lie 2-algebroid $TM \oplus T^*M$
- Captures Lie 2-algebra of symmetries (gauge+diffeos)
- In particular: Courant/Dorfman brackets
- Similarly: GR coupled to n-form fields
- Picture allows for an extension to pre-Lie 2-algebroids
- Lie 2-algebra with C- and D-brackets
- Categorified Jacobi relations
 ⇔ weakened section condition
- Fully algebraic and coordinate independent picture
- Know how to twist pre-Lie 2-algebroids
- Potential global picture (work in progress)

Part I : Generalized Geometry

Generalized Geometry provides a nice geometric description of the B-field.

Ingredients: massless string modes: metric g, 2-form B, dilaton ϕ .

Gerbes

- \bullet Well-known: B belongs to connective structure of a gerbe Gawedzki 1987, Freed&Witten 1999
- Manifold M, cover $Y = \sqcup_i U_i \twoheadrightarrow M$, $Y^{[2]} = \sqcup_{i,j} U_i \cap U_j$, . . .
- Principal U(1)-bundle over M:

$$U(1) \to P \to M$$
, $g_{ij}g_{jk} = g_{ik}$, $A_i = g_{ij}^{-1}(A_j + d)g_{ij}$

• U(1)-gerbe \mathscr{G} over M:

$$h_{ijk}h_{ik\ell} = h_{ij\ell}h_{jk\ell} , A_{ij} - A_{ik} + A_{jk} = d\log(h_{ijk}) , B_i - B_j = dA_{ij}$$

Categorified spaces ⇒ categorified symmetries!

Generalized Geometry provides a nice geometric description of the B-field.

Ordinary geometry: "Local" Atiyah Algebroid for $\mathrm{U}(1)$ -bundle

$$0 \to M \times i\mathbb{R} \xrightarrow{\hookrightarrow} TM \oplus i\mathbb{R} \xrightarrow{\operatorname{pr}} TM \to 0$$

- Gauge potential $A:TM \to i\mathbb{R}$ is defined by section of pr
- ullet Infinitesimal symm. (diffeos+gauge): sections of $TM \oplus i\mathbb{R}$

Generalized Geometry: Courant algebroid for U(1)-gerbe

$$0 \to T^*M \xrightarrow{\hookrightarrow} TM \oplus T^*M \xrightarrow{\operatorname{pr}} TM \to 0$$

- $g + B : TM \to T^*M$ again from section of pr
- ullet Infinitesimal symm. (diffeos+gauge): sections of $TM\oplus T^*M$

not complete picture:

NQ-manifolds, known from BRST quantization, provide very useful language.

N-manifolds, NQ-manifold

ullet N-graded manifold with coordinates of degree $0,1,2,\ldots$

- NQ-manifold: vector field Q of degree 1, $Q^2=0$
- Physicists: think ghost numbers, BRST charge, SFT
- symplectic NQ-manifold: ω nondegenerate, closed, $\mathcal{L}_Q\omega=0$

Examples:

- Tangent algebroid T[1]M, $\mathcal{C}^{\infty}(T[1]M) \cong \Omega^{\bullet}(M)$, Q = d
- Lie algebra $\mathfrak{g}[1]$, coordinates ξ^a of degree 1:

$$Q=-rac{1}{2}f^c_{ab}\xi^a\xi^brac{\partial}{\partial\xi^c}$$
 Jacobi identity $\Leftrightarrow Q^2=0$

NQ-manifolds provide an easy definition of L_{∞} -algebras.

Lie n-algebroid or n-term L_{∞} -algebroid:

$$M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots \leftarrow M_n \leftarrow * \leftarrow * \leftarrow \ldots$$

Lie n-algebra or n-term L_{∞} -algebra:

$$* \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots \leftarrow M_n \leftarrow * \leftarrow * \leftarrow \ldots$$

Important example of NQ-manifold: Lie 2-algebra

$$\begin{split} * \leftarrow W[1] \leftarrow V[2] \leftarrow * \leftarrow \dots \;, \quad \text{coords.} \; w^a, \; v^i \\ Q = -m^a_i v^i \frac{\partial}{\partial w^a} - \frac{1}{2} m^c_{ab} w^a w^b \frac{\partial}{\partial w^c} - m^j_{ai} w^a v^i \frac{\partial}{\partial v^j} - \frac{1}{3!} m^i_{abc} w^a w^b w^c \frac{\partial}{\partial v^i} \;, \\ \mu_1(\tau_i) = m^a_i \tau_a \;, \quad \mu_2(\tau_a, \tau_b) = m^c_{ab} \tau_c \;, \quad \dots \;, \quad \mu_3(\tau_a, \tau_b, \tau_c) = m^i_{abc} \tau_i \end{split}$$

Examples of symplectic NQ-manifolds:

Symplectic manifolds:

$$(M,\omega)$$
, $Q=0$

Poisson manifolds:

$$T^*[1]M$$
, $\omega = \mathrm{d}p_\mu \wedge \mathrm{d}x^\mu$, $Q = \pi^{\mu\nu} p_\mu \frac{\partial}{\partial x^\nu}$

Every symplectic L_{∞} -algebroid comes with an L_{∞} -algebra.

An underappreciated/widely unknown fact:

All symplectic Lie *n*-algebroids \mathcal{M} come with Lie *n*-algebra $L(\mathcal{M})$:

$$\mathcal{C}_{0}^{\infty}(\mathcal{M}) \xrightarrow{Q} \qquad \mathcal{C}_{1}^{\infty}(\mathcal{M}) \xrightarrow{Q} \qquad \dots \xrightarrow{Q} \qquad \mathcal{C}_{n-2}^{\infty}(\mathcal{M}) \xrightarrow{Q} \qquad \mathcal{C}_{n-1}^{\infty}(\mathcal{M})
\mathsf{L}_{n-1}(\mathcal{M}) \xrightarrow{Q} \qquad \mathsf{L}_{n-2}(\mathcal{M}) \xrightarrow{Q} \qquad \dots \xrightarrow{Q} \qquad \mathsf{L}_{1}(\mathcal{M}) \xrightarrow{Q} \qquad \mathsf{L}_{0}(\mathcal{M})
\mu_{1}(\ell) = \begin{cases} 0 & \ell \in \mathcal{C}_{n-1}^{\infty}(\mathcal{M}) = \mathsf{L}_{0}(\mathcal{M}) \\ Q\ell & \text{else} \end{cases}$$

$$\mu_2(\ell_1, \ell_2) = \frac{1}{2} \left(\{ \delta \ell_1, \ell_2 \} \pm \{ \delta \ell_2, \ell_1 \} \right) , \quad \delta(\ell) = \begin{cases} Q\ell & \ell \in \mathsf{L}_0(\mathcal{M}) \\ 0 & \mathsf{else} \end{cases}$$

$$\mu_3(\ell_1, \ell_2, \ell_3) = -\frac{1}{12} \left(\{ \{ \delta \ell_1, \ell_2 \}, \ell_3 \} \pm \dots \right)$$

Roytenberg, Rogers, Fiorenza, Getzler

"Higher derived brackets" (Kosmann-Schwarzbach, Voronov, ...)

Important class of examples next.

The key geometric structure behind generalized geometry is locally $T^*[2]T[1]M$.

The symplectic NQ-manifold $T^*[2]T[1]M$

Local description, choose \mathbb{R}^D as base manifold.

$$T^*[2]T[1]\mathbb{R}^D = \mathbb{R}^D \oplus \mathbb{R}^D[1] \oplus \mathbb{R}^D[1] \oplus \mathbb{R}^D[2]$$

$$x^{\mu} \qquad \xi^{\mu} \qquad \zeta_{\mu} \qquad p_{\mu}$$

$$\mathbf{Q} = \xi^{\mu} \frac{\partial}{\partial x^{\mu}} + p_{\mu} \frac{\partial}{\partial \zeta_{\mu}} \qquad \mathbf{\omega} = \mathrm{d}x^{\mu} \wedge \mathrm{d}p_{\mu} + \mathrm{d}\xi^{\mu} \wedge \mathrm{d}\zeta_{\mu}$$

Lie 2-algebra of $\mathcal{M}:=T^*[2]T[1]\mathbb{R}^D$: symmetry algebra of gerbe!

•
$$C_0^{\infty}(\mathcal{M}) \to C_1^{\infty}(\mathcal{M}) = L_1(\mathcal{M}) \to L_0(\mathcal{M})$$

•
$$\mathcal{C}_1^{\infty}(\mathcal{M}) = \mathsf{L}_0(\mathcal{M}) \cong \Gamma(TM \oplus T^*M)$$

• Courant: $\mu_2(\ell_1, \ell_2) = \frac{1}{2} (\{\delta \ell_1, \ell_2\} \pm \{\delta \ell_2, \ell_1\})$

The above picture is part of a larger story, involving GR coupled to n-form potentials.

More generally: Couple GR to *n*-form gauge potential

Vinogradov algebroids $\mathcal{V}_n(M)$

- Locally as a vector bundle: $V_n(M) := T^*[n]T[1]M$
- coords: $(x^{\mu}, \xi^{\mu}, \zeta_{\mu}, p_{\mu})$ of degrees (0, 1, n-1, n)
- Homological vector field: $Q = \xi^{\mu} \frac{\partial}{\partial x^{\mu}} + p_{\mu} \frac{\partial}{\partial \zeta_{\mu}}$
- Symplectic form: $\omega = \mathrm{d} x^{\mu} \wedge \mathrm{d} p_{\mu} + \mathrm{d} \xi^{\mu} \wedge \mathrm{d} \zeta_{\mu}$
- Geometric picture: principal n-bundle or n-1-gerbe
- diffeos+gauge: degree n-1 functions of $\mathcal{V}_n(M)$.
- Higher Courant/Dorfman brackets
- Full Symmetrie Lie n-algebra: Lie n-algebra of $\mathcal{V}_n(M)$

How to extend this to Double Field Theory?

Part II: Double Field Theory / Extended Geometry

There are two properties that offer themselves to a weakening.

Requirements

- Geometry built from spacetime
- Symmetry Lie n-algebra structure from derived brackets
- Reduction to Vinogradov algebroids of Generalized Geometry
- a few further points, related to global picture

Need to keep: graded vector bundle, symplectic form, |Q|=1

Note: $Q^2=0$ not necessary everywhere for L_{∞} -algebra:

$$L_{n-1}(\mathcal{M}) \xrightarrow{Q} L_{n-2}(\mathcal{M}) \xrightarrow{Q} \dots \xrightarrow{Q} L_1(\mathcal{M}) \xrightarrow{Q} L_0(\mathcal{M}) \longrightarrow 0$$

Instead: something like $\{Q^2, -\} = 0$.

(Exceptional field theory: Q does not have to be vector field.)

All relevant notions can be reasonably extended.

Definition: Symplectic pre-NQ-Manifold of degree n

Symplectic N-manifold (\mathcal{M},ω) of degree n, i.e. $|\omega|=n$, compatible vector field Q of degree 1, i.e. |Q|=1 and $\mathcal{L}_Q\omega=0$.

Definition: L_{∞} -structure

A subset $L(\mathcal{M})$ of the functions $\mathcal{C}^{\infty}(\mathcal{M})$ such that the derived brackets close and form an L_{∞} -algebra.

Theorem

$$\begin{split} (\mathcal{M},\omega) \text{ of degree 2.} \\ \mathsf{L}(\mathcal{M}) &= \mathsf{L}_1(\mathcal{M}) \oplus \mathsf{L}_0(\mathcal{M}) \subset \mathcal{C}^\infty(\mathcal{M}) \text{, derived brackets close.} \\ \mathsf{L}(\mathcal{M}) \text{ is } L_\infty\text{-structure iff for all } f,g \in \mathsf{L}_1(\mathcal{M}),\ X,Y,Z \in \mathsf{L}_0(\mathcal{M})\text{:} \\ &\{Q^2f,g\} + \{Q^2g,f\} = 0\ , \quad \{Q^2X,f\} + \{Q^2f,X\} = 0 \\ &\{\{Q^2X,Y\},Z\}_{[X,Y,Z]} = 0 \end{split}$$

This framework is readily applied to reproduce DFT's strong section condition.

- Start: $M = \mathbb{R}^D$, double: T^*M , coords. $x^M = (x^\mu, x_\mu)$
- $V_2(T^*M) = T^*[2]T[1](T^*M)$, coords. $(x^M, \xi^M, \zeta_M, p_M)$
- $\omega = \mathrm{d}x^M \wedge \mathrm{d}p_M + \mathrm{d}\xi^M \wedge \mathrm{d}\zeta_M$, $Q = \sqrt{2} \left(\xi^M \frac{\partial}{\partial x^M} + p_M \frac{\partial}{\partial \zeta_M} \right)$
- ullet Crucial to GenGeo/DGT: T-duality group ullet(D,D)
- ullet Reduce structure group $\mathrm{GL}(2D,\mathbb{R})$ to $\mathrm{O}(D,D)$ by introducing

$$\eta_{MN} = \eta^{MN} = \left(\begin{array}{cc} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{array}\right)$$

New coordinates:

$$\boldsymbol{\theta}^{\mathbf{M}} = \frac{1}{\sqrt{2}} (\xi^{M} + \eta^{MN} \zeta_{N}) \qquad \boldsymbol{\beta}^{\mathbf{M}} = \frac{1}{\sqrt{2}} (\xi^{M} - \eta^{MN} \zeta_{N})$$

• Polarize by putting $\beta^M \stackrel{!}{=} 0$:

$$Q = \theta^M \frac{\partial}{\partial x^M} + p_M \eta^{MN} \frac{\partial}{\partial \theta^N} , \quad Q^2 = p_M \eta^{MN} \frac{\partial}{\partial x^N} \neq 0$$

ullet We obtain a symplectic pre NQ-manifold, $\mathcal{E}_2(M)$.

This framework is readily applied to reproduce DFT's strong section condition.

$$\mathcal{E}_{2}(\mathbb{R}^{D}) = \mathbb{R}^{2D} \oplus \mathbb{R}^{2D}[1] \oplus \mathbb{R}^{2D}[2]$$

$$x^{M} \qquad \theta^{M} \qquad p_{M}$$

$$Q = \theta^{M} \frac{\partial}{\partial x^{M}} + p_{M} \eta^{MN} \frac{\partial}{\partial \theta^{N}} \qquad \omega = \mathrm{d}x^{M} \wedge \mathrm{d}p_{M} + \frac{1}{2} \eta_{MN} \mathrm{d}\theta^{M} \wedge \mathrm{d}\theta^{N}$$

Proposition

Let
$$\mathsf{L} = \mathsf{L}_0 \oplus \mathsf{L}_1$$
 be L_∞ -structure on $\mathcal{E}_2(\mathbb{R}^D)$, $f,g \in \mathsf{L}_1$ and $X = X_M \theta^M, Y = Y_M \theta^M, Z = Z_M \theta^M \in \mathsf{L}_0$. Then:
$$\{Q^2 f, g\} + \{Q^2 g, f\} = 2 \partial^M f \ \partial_M g = 0$$

$$\{Q^2 X, f\} + \{Q^2 f, X\} = 2 \partial^M X \ \partial_M f = 0$$

$$\{\{Q^2 X, Y\}, Z\}_{[X,Y,Z]} = 2 \theta^L \left((\partial^M X_L)(\partial_M Y^K) Z_K\right)_{[X,Y,Z]} = 0$$

Note: Fulfilled for $\partial^M \phi \ \partial_M \psi = 0 \Rightarrow$ Weakened section condition

The picture we have:

- ullet Symmetries of DFT are described by L_{∞} -structure on $\mathcal{E}_2(\mathbb{R}^D)$
- Extended Geometry $\mathcal{E}_2(\mathbb{R}^D)$: polarization of GenGeo
- Reduce Ext. Geo. \rightarrow GenGeo: Choice of L_{∞} -structure
- Example:

$$\mathsf{L} = \left\{ F \in \mathcal{C}^{\infty}(\mathcal{E}_{2}(\mathbb{R}^{D})) \middle| \frac{\partial}{\partial x_{\mu}} F = 0 \right\}$$
$$Q = \theta^{\mu} \frac{\partial}{\partial x^{\mu}} + p_{\mu} \frac{\partial}{\partial \theta^{\mu}} \qquad \omega = \mathrm{d}x^{\mu} \wedge \mathrm{d}p_{\mu} + \mathrm{d}\theta^{\mu} \wedge \mathrm{d}\theta_{\mu}$$

 \Rightarrow Vinogradov algebroid $\mathcal{V}_2(\mathbb{R}^D)$ of Generalized Geometry

An action of the symmetry Lie n-algebra can be defined.

Observations:

- ullet Action of Lie algebra ${\mathfrak g}$ on manifold M: hom. ${\mathfrak g} \to {\mathfrak X}(M)$
- ullet N-manifold $\mathcal{M},\,\mathfrak{X}(\mathcal{M})$ is N-graded Lie algebra, is L_{∞} -algebra

Definition

Action of L_{∞} -algebra L on manifold \mathcal{M} : L_{∞} -morph. L $\to \mathfrak{X}(\mathcal{M})$.

Note: $V_2(M)$ only encodes forms, not symmetric tensors.

Extension of Poisson bracket

$$\{-,-\}: \ \mathcal{C}^{\infty}(\mathcal{M}) \times T(\mathcal{M}) \to T(\mathcal{M})$$

$$\{f,g \otimes h\} := \{f,g\} \otimes h + (-1)^{(n-|f|)|g|} g \otimes \{f,h\}$$

Definition: Extended tensors

Let L be L_{∞} -structure on \mathcal{M} . Extended tensors are elts. of $T(\mathcal{M})$ such that elements of L act on it via $X \rhd t := \{\delta X, t\}$.

Action functionals are readily constructed from the generalized metric.

- Extended tangent bundle has structure group $GL(m, \mathbb{R})$
- Reduce to subgroup H by coboundary: $h_{ij} = \gamma_i h_{ij} \gamma_j$
- Factor out H-equivalent coboundaries: $\mathcal{H}_i = \gamma_i^* \gamma_i$.

Action functionals for generalized metric \mathcal{H} , dilaton d:

$$S = \int_{M} e^{-2d} d^{D}x \Big(c_{0} \mathcal{H}_{MN} \partial^{M} \mathcal{H}_{KL} \partial^{N} \mathcal{H}^{KL} + c_{1} \mathcal{H}_{MN} \partial^{M} \mathcal{H}_{KL} \partial^{L} \mathcal{H}^{KN} + c_{2} \mathcal{H}^{MN} (\mathcal{H}^{KL} \partial_{M} \mathcal{H}_{KL}) (\mathcal{H}^{RS} \partial_{N} \mathcal{H}_{RS}) + c_{3} \mathcal{H}^{MN} \mathcal{H}^{PQ} (\mathcal{H}^{RS} \partial_{P} \mathcal{H}_{RS}) (\partial_{M} \mathcal{H}_{NQ}) + c_{4} \partial^{M} d\partial^{N} \mathcal{H}_{MN} + c_{5} \mathcal{H}_{MN} \partial^{M} d\partial^{N} d \Big)$$

Examples:

- No reduction, γ_i are vielbeins, $\mathcal{H}=(g_{\mu\nu})$, \Rightarrow GR
- ullet GL $(2D,\mathbb{R}) o \mathrm{O}(D,1)$, yields GR + 1-form gauge potential

$$\mathcal{H}^{mn} = \begin{pmatrix} g^{\mu\nu} & -g^{\mu\nu}A_{\nu} \\ -A_{\mu}g^{\mu\nu} & 1 + g^{\mu\nu}A_{\mu}A_{\nu} \end{pmatrix}$$

• $\operatorname{GL}(2D,\mathbb{R}) \to \operatorname{O}(D,D)$ yields GR + 2-form gauge potential Generalized Metric of Generalized Geometry.

The global picture seems to be in reach now.

- $\bullet \ \, {\sf Surjective \ submersion} \ \, Y \twoheadrightarrow M, \, Y^{[2]} := Y \times_M Y, \, Y^{[n]} := \dots$
- For example, $Y = \sqcup_i U_i$, $Y^{[2]} = \sqcup_{i,j} U_i \cap U_j$
- ullet Gerbe is a principal U(1)-bundle over ${m Y}^{[2]}$ + data over $Y^{[3]}$
- Trivial gerbe: Y=M, $Y^{[2]}=M$, $\mathscr{G}=M\times \mathrm{U}(1)=M\times S^1$.
- T-duality on $M \times S^1$: trivial gerbe, H = dB globally.

Non-trivial gerbe in Generalized Geometry

- $\bullet \ \mathcal{V}_2(M) = T^*[2]T[1]M \ \text{and} \ Q = \xi^\mu \tfrac{\partial}{\partial x^\mu} + p_\mu \tfrac{\partial}{\partial \zeta_\mu} \ \text{only locally}$
- Assume nontrivial gerbe $H, B_{(i)}, A_{(ij)}, h_{(ijk)}$
- Hitchin's Generalized tangent bundle over patches i, j: $(X_{(i)}, \Lambda_{(i)}) = (X_{(j)}, \Lambda_{(j)} + \iota_X dA_{(ij)})$
- $\bullet \ \ Q = \xi^{\mu} \frac{\partial}{\partial x^{\mu}} + p_{\mu} \frac{\partial}{\partial \zeta_{\mu}} \frac{1}{3!} (\frac{\partial}{\partial x^{\nu}} H) \frac{\partial}{\partial p_{\nu}} + \frac{1}{2!} H_{\nu \mu_{1} \mu_{2}} \xi^{\mu_{1}} \xi^{\mu_{2}} \frac{\partial}{\partial \zeta_{\nu}}$

Comments on the Global Picture: Double Field Theory 23/24

The global picture seems to be in reach now.

- ullet L_{∞} -algebra of symmetries of DFT acts as Lie algebra
- Lie algebra can be integrated Hohm, Zwiebach, 2012
- Proposal: Patch local descriptions by finite DFT symmetries
 Berman, Cederwall, Perry, 2014
- Papadopoulos 2014: This only works for trivial gerbes
- No surprise, DFT reduces to GenGeo, where we need to twist!
- Need to twist C-/D-bracket, just as in GenGeo.
- Twist can be defined and studied in our framework.
- We recover twists of Generalized Geometry as special cases.
- Integrate twisted action
- Global picture: Patch together with twisted transformations!

Summary:

- \checkmark Full algebraic and geometric picture for local DFT
- \checkmark Picture is extension from GR coupled to n-form fields
- √ weakened section condition from algebra
- √ twist of symmetry Lie 2-algebra
- \checkmark Initial studies of global picture and Riemannian Geometry

Soon to come:

- Exceptional Field Theory (M-theory)
- > Full Extended Riemannian Geometry
- Global Picture

Summary:

- √ Full algebraic and geometric picture for local DFT
- \checkmark Picture is extension from GR coupled to n-form fields
- √ weakened section condition from algebra
- √ twist of symmetry Lie 2-algebra
- ✓ Initial studies of global picture and Riemannian Geometry

Soon to come:

Summary:

- √ Full algebraic and geometric picture for local DFT
- \checkmark Picture is extension from GR coupled to n-form fields
- √ weakened section condition from algebra
- √ twist of symmetry Lie 2-algebra
- √ Initial studies of global picture and Riemannian Geometry

Soon to come:

Extended Riemannian Geometry and Double Field Theory

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

EMPG, Edinburgh, 1.2.2017