Office: CM.G10
Phone: +44 131 451-3966
Fax: +44 131 451-3249
@: C•Saemann@hw•ac•uk

Department of Mathematics
Heriot-Watt University
Edinburgh
EH14 4AS

Christian Saemann
Associate Professor in Mathematical Physics

Publications

Basic research is like shooting an arrow into the air and, where it lands, painting a target.

Below is a more-or-less up-to-date list of my scientific publications. Alternative sites with lists of my publications:

Quick Links:

Refereed Journal Papers

[J42]

B. Jurco, C. Saemann and M. Wolf, Higher Groupoid Bundles, Higher Spaces, and Self-Dual Tensor Field Equations, Fortschr. Phys. 64 (2016) 674 [1604.01639 [hep-th]].

[J41]

P. Ritter, C. Saemann and L. Schmidt, Generalized Higher Gauge Theory, JHEP 04 (2016) 032 [1512.07554 [hep-th]].

[J40]

P. Ritter and C. Saemann, L_\infty-Algebra Models and Higher Chern-Simons Theories, Rev. Math. Phys. 28 (2016) 1650021 [1511.08201 [hep-th]].

[J39]

S. Rea and C. Saemann, The Phase Diagram of Scalar Field Theory on the Fuzzy Disc, JHEP 11 (2015) 115 [1507.05978 [hep-th]].

[J38]

C. Saemann, Bootstrapping Fuzzy Scalar Field Theory, JHEP 1504 (2015) 044 [1412.6255 [hep-th]].

[J37]

G. A. Demessie and C. Saemann, Higher Poincare Lemma and Integrability, J. Math. Phys. 56 (2015) 082902 [1406.5342 [hep-th]].

[J36]

B. Jurco, C. Saemann and M. Wolf, Semistrict Higher Gauge Theory, JHEP 1504 (2015) 087 [1403.7185 [hep-th]].

[J35]

S. Palmer and C. Saemann, Self-dual String and Higher Instanton Solutions, Phys. Rev. D 89 (2014) 065036 [1312.5644 [hep-th]].

[J34]

S. Palmer and C. Saemann, The ABJM Model is a Higher Gauge Theory, Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450075 [1311.1997 [hep-th]].

[J33]

P. Ritter and C. Saemann, Lie 2-Algebra Models, JHEP 1404 (2014) 066 [1308.4892 [hep-th]].

[J32]

S. Palmer and C. Saemann, Six-Dimensional (1,0) Superconformal Models and Higher Gauge Theory, J. Math. Phys. 54 (2013) 113509 [1308.2622 [hep-th]]; MathSciNet.

[J31]

C. Saemann and M. Wolf, Six-Dimensional Superconformal Field Theories from Principal 3-Bundles over Twistor Space, Lett. Math. Phys. 104 (2014) 1147 [1305.4870 [hep-th]].

[J30]

C. Saemann and R. J. Szabo, Groupoids, Loop Spaces and Quantization of 2-Plectic Manifolds, Rev. Math. Phys. 25 (2013) 1330005 [1211.0395 [hep-th]]; MathSciNet.

[J29]

C. Saemann and M. Wolf, Non-Abelian Tensor Multiplet Equations from Twistor Space, Commun. Math. Phys. 328 (2014) 527 [1205.3108 [hep-th]]; MathSciNet.

[J28]

D. Harland, S. Palmer and C. Saemann, Magnetic Domains, JHEP 1210 (2012) 167 [1204.6685 [hep-th]].

[J27]

S. Palmer and C. Saemann, M-brane Models from Non-Abelian Gerbes, JHEP 1207 (2012) 010 [1203.5757 [hep-th]].

[J26]

C. Saemann, R. Wimmer and M. Wolf, A Twistor Description of Six-Dimensional N=(1,1) Super Yang-Mills Theory, JHEP 1205 (2012) 20 [1201.6285 [hep-th]]; MathSciNet.

[J25]

C. Saemann and M. Wolf, On Twistors and Conformal Field Theories from Six Dimensions, J. Math. Phys. 54 (2013) 013507 [1111.2539 [hep-th]]; MathSciNet.

[J24]

S. Palmer and C. Saemann, Constructing Generalized Self-Dual Strings, JHEP 1110 (2011) 008 [1105.3904 [hep-th]]; MathSciNet.

[J23]

C. Papageorgakis and C. Saemann, The 3-Lie Algebra (2,0) Tensor Multiplet and Equations of Motion on Loop Space, JHEP 1105 (2011) 099 [1103.6192 [hep-th]]; MathSciNet.

[J22]

S. A. Cherkis, C. O'Hara and C. Saemann, Super Yang-Mills Theory with Impurity Walls and Instanton Moduli Spaces, Phys. Rev. D 83 (2011) 126009 [1103.0042 [hep-th]].

[J21]

M. Ihl, C. Sachse and C. Saemann, Fuzzy Scalar Field Theory as Matrix Quantum Mechanics, JHEP 1103 (2011) 091 [1012.3568 [hep-th]]; MathSciNet.

[J20]

J. DeBellis, C. Saemann and R. J. Szabo, Quantized Nambu-Poisson Manifolds in a 3-Lie Algebra Reduced Model, JHEP 1104 (2011) 075 [1012.2236 [hep-th]]; MathSciNet.

[J19]

C. Saemann, Constructing Self-Dual Strings, Commun. Math. Phys. 305 (2011) 513 [1007.3301 [hep-th]]; MathSciNet.

[J18]

C. Saemann, The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CP^n, SIGMA 6 (2010) 50 [1003.4683 [hep-th]]; MathSciNet.

[J17]

J. DeBellis, C. Saemann and R. J. Szabo, Quantized Nambu-Poisson Manifolds and n-Lie Algebras, J. Math. Phys. 51 (2010) 122303 [1001.3275 [hep-th]]; MathSciNet.

[J16]

N. Akerblom, C. Saemann and M. Wolf, Marginal Deformations and 3-Algebra Structures, Nucl. Phys. B 826 (2010) 456 [0906.1705 [hep-th]]; MathSciNet.

[J15]

S. Cherkis, V. Dotsenko and C. Saemann, On Superspace Actions for Multiple M2-Branes, Metric 3-Algebras and their Classification, Phys. Rev. D 79 (2009) 086002 [0812.3127 [hep-th]]; MathSciNet.

[J14]

C. Iuliu-Lazaroiu, D. McNamee and C. Saemann, Generalized Berezin-Toeplitz quantization of Kaehler supermanifolds, JHEP 0905 (2009) 055 [0811.4743 [hep-th]]; MathSciNet.

[J13]

S. Cherkis and C. Saemann, Multiple M2-branes and Generalized 3-Lie algebras, Phys. Rev. D 78 (2008) 066019 [0807.0808 [hep-th]]; MathSciNet.

[J12]

C. Iuliu-Lazaroiu, D. McNamee and C. Saemann, Generalized Berezin quantization, Bergman metrics and fuzzy Laplacians, JHEP 0809 (2008) 059 [0804.4555 [hep-th]]; MathSciNet.

[J11]

D. O'Connor and C. Saemann, Fuzzy Scalar Field Theory as a Multitrace Matrix Model, JHEP 0708 (2007) 066 [0706.2493 [hep-th]]; MathSciNet.

[J10]

C. Saemann, Fuzzy Toric Geometries, JHEP 0802 (2008) 111 [hep-th/0612173]; MathSciNet.

[J9]

S. Murray and C. Saemann, Quantization of Flag Manifolds and their Supersymmetric Extensions, Adv. Theor. Math. Phys. 12 (2008) 641 [hep-th/0611328]; MathSciNet.

[J8]

S. Kurkcuoglu and C. Saemann, Drinfeld Twist and General Relativity with Fuzzy Spaces, Class. Quant. Grav. 24 (2007) 291 [hep-th/0606197]; MathSciNet.

[J7]

O. Lechtenfeld and C. Saemann, Matrix Models And D-Branes In Twistor String Theory, JHEP 0603 (2006) 002 [hep-th/0511130]; MathSciNet.

[J6]

C. Saemann, On The Mini-Superambitwistor Space And N=8 Super Yang-Mills Theory, Adv. Math. Phys. 2009 (2009) 784215 [hep-th/0508137]; MathSciNet.

[J5]

M. Ihl and C. Saemann, Drinfeld-Twisted Supersymmetry And Non-Anticommutative Superspace, JHEP 0601 (2006) 065 [hep-th/0506057]; MathSciNet.

[J4]

A. D. Popov, C. Saemann and M. Wolf, The Topological B-model on a Mini-Supertwistor Space and Supersymmetric Bogomolny Monopole Equations, JHEP 0510 (2005) 058 [hep-th/0505161]; MathSciNet.

[J3]

C. Saemann, The Topological B-Model On Fattened Complex Manifolds And Subsectors Of N=4 Self-Dual Yang-Mills Theory, JHEP 0501 (2005) 042 [hep-th/0410292]; MathSciNet.

[J2]

A. D. Popov and C. Saemann, On Supertwistors, The Penrose-Ward Transform And N=4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 9 (2005) 931 [hep-th/0405123]; MathSciNet.

[J1]

C. Saemann and M. Wolf, Constraint and Super Yang-Mills Equations on the Deformed Superspace R^(4|16)_hbar, JHEP 0403 (2004) 048 [hep-th/0401147]; MathSciNet.

Preprints

[P6]

C. Saemann and M. Wolf, Supersymmetric Yang-Mills Theory as Higher Chern-Simons Theory, 1702.04160 [hep-th].

[P5]

A. Deser and C. Saemann, Extended Riemannian Geometry I: Local Double Field Theory, 1611.02772 [hep-th].

[P4]

S. Bunk, C. Saemann and R. J. Szabo, The 2-Hilbert Space of a Prequantum Bundle Gerbe, 1608.08455 [math-ph].

[P3]

G. A. Demessie and C. Saemann, Higher Gauge Theory with String 2-Groups, 1602.03441 [math-ph].

[P2]

P. Ritter and C. Saemann, Automorphisms of Strong Homotopy Lie Algebras of Local Observables, 1507.00972 [hep-th].

[P1]

C. I. Lazaroiu, D. McNamee, C. Saemann and A. Zejak, Strong Homotopy Lie Algebras, Generalized Nahm Equations and Multiple M2-branes, 0901.3905 [hep-th].

Review Papers

[R1]

C. Saemann, M-Brane Models and Loop Spaces, Mod. Phys. Lett. A 27 (2012) 1230019 [1206.0432 [hep-th]].

Conference proceedings

[C6]

C. Saemann, Lectures on Higher Structures in M-Theory, 1609.09815 [hep-th].

[C5]

C. Saemann and R. J. Szabo, Groupoid Quantization of Loop Spaces, PoS C ORFU2011 (2012) 46 [1203.5921 [hep-th]].

[C4]

C. Saemann and R. J. Szabo, Quantization of 2-Plectic Manifolds, in: ``Progress in Operator Algebras, Noncommutative Geometry, and their Applications'', Conference Proceedings, Bucharest, April 2011, eds. I. Popescu and R. Purcie, p. 135 [1106.1890 [hep-th]].

[C3]

C. Saemann and R. J. Szabo, Branes, Quantization and Fuzzy Spheres, PoS C NCFG2010 (2010) 005 [1101.5987 [hep-th]].

[C2]

D. O'Connor and C. Saemann, A Multitrace Matrix Model from Fuzzy Scalar Field Theory, Proc. of the Int. Workshop on Supersymmetries and Quantum Symmetries, Dubna, 30.7.-4.8.2007 [0709.0387 [hep-th]].

[C1]

C. Saemann, The Mini-Superambitwistor Space, Proc. of the Int. Workshop on Supersymmetries and Quantum Symmetries, Dubna, 27.7.-31.7.2005 [hep-th/0511251].

Book chapters

[B1]

P. Cartier, C. DeWitt-Morette, M. Ihl and C. Saemann, Supermanifolds - Application to Supersymmetry, in: ``Multiple facets of quantization and supersymmetry: Michael Marinov memorial volume'', Eds. M.~Olshanetsky and A.~Vainshtein, World Scientific (2002) [math-ph/0202026]; MathSciNet.

PhD Thesis

My PhD thesis with the title "Aspects of Twistor Geometry and Supersymmetric Field Theories within Superstring Theory" is concerned with essentially two topics: non-anticommutative field theories and twistor string theory. The (major) part on twistor theory contains a hopefully useful introduction to the basics of this subject. And here are the transparencies of the talk with which I defended my thesis.

Master Thesis

My master thesis is about a new representation for bosonic and fermionic Fock spaces using differential forms on supermanifolds. It contains an introduction to supermathematics and a discussion of the Fermi oscillator and its representation by functions of odd (anticommuting) variables.

Undergraduate studies

As an undergraduate student, I had to do quite some experimental projects, although I always wanted to do high-energy theory later on. But, I have to admit, I had much fun with these projects, and did not regret having to do them at all.

First, there was this project for the production and characterization of nano-silverclusters on HOPG in the group of Prof. Gerber in Würzburg.

The second important project had to do with the MINOS experiment. Together with Matthias Ihl, I measured the effect of a magnetic field on the light yield on certain scintillator material, the results of which are found here.